
 
1 INTRODUCTION 

1.1 The importance of rock and rock joints 

Why is shear strength, consisting of cohesion, fric-
tion, and  dilation  ultra-important to earth-dwellers? 
Basically because without their variety there would 
be no mountains, no river valleys, no deserts, and no 
oil or gas. Since we are blessed with the variability 
of these three parameters, we have variable scenery 
ranging from mountains, to rolling hills, to deserts, 
and mountain- and sea-cliffs as the source of screes, 
beaches and eventual inland or coastal sand-dunes. 
The cycle continues with post-lithification (and post-
tectonic) fracturing, breakage of cohesion, block 
formation, and once more: mobilized friction and di-
lation. The three strength components do not occur 
simultaneously, so cohesive and frictional strength 
need to be partially separated, by degrading cohe-
sion, mobilizing friction, then mobilizing dilation. 

 
1.2 Economic influence of shear strength 

It is interesting to consider that petroleum reserves 
have been retained (for our present benefit, and pos-
sible downfall), due to cap-rock intolerance of shear 

 
 
stress. Shales and salt therefore exhibit higher levels  
of minimum principal stress compared to the lower  
σmin of stiffer petroleum bearing sediments. Fur-
thermore, petroleum reserves have also been re-
tained due to clay-sealing along fault zones, thanks 
to the weakest product of weathering or hydrother-
mal alteration. At shallow depth the above minimum 
stress anisotropy is reversed, and the stiffer beds will 
tend to attract higher minimum stress than cap-rock 
shale or salt (Barton, 2006). 

1.3 Economic influence of joint behaviour 

 

Rock joints or natural fractures provide conductivity 
during water and petroleum production, by connect-
ing the fluid-storing matrix to the wells. When frac-
ing oil-shales for shale-gas production, the incipient 
(or very tightly closed) jointing may apparently 
shear and dilate enough to unlock the vast potential 
reserves in an otherwise impermeable looking rock 
mass. Micro-seismic activity in geothermal reser-
voirs, also suggests that jointing is mobilized, some-
times in unexpected ways when today’s joint orien-
tation is no longer consistent with today’s rotated 
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ABSTRACT: These three important topics, each deserving separate volumes, even when summarized, can 
only be treated in a single article by linking them. The all-encompassing shear strength of rock masses cannot 
be described with advanced algebra as in Hoek-Brown, nor as linear Mohr-Coulomb, each of which are a pri-
ori estimates rather than the desirable a posteriori based on experience. The highly non-linear shear strength 
of intact rock, which has finally been defined as strongly deviated from Mohr-Coulomb, and with more curva-
ture than Hoek-Brown, is the component which fails at small strain. Deep in the crust rocks may be ductile or 
at their critical state. The very different and weaker joints or fractures provide stability problems in civil and 
mining engineering, and help maintain some permeability in fractured reservoirs. Joints are highly anisotropic 
features. They exhibit large differences between their high normal stiffness, and their low, scale-dependent 
shear stiffness. Joints obviously reach their peak shear strength at larger shear strain than intact rock, and their 
frictional strength ‘remains’ after cohesion is lost, as in the words of Müller 1966. It is not correct to add the 
cohesive strength of the intact rock and the shear resistance of the joints, as in c plus sigma-n tan-phi, nor as 
in the non-linear form of Hoek-Brown. A third shear strength component may kick-in at larger shear strain: 
the lower frictional strength of clay-filled discontinuities, such as in the neighbourhood of faults. Finally there 
is the wide-reaching problem of stress transformation, from principal stresses to normal and shear stress com-
ponents on a plane. Dilation, shearing and the very presence of the plane violates the theoretical assumptions. 



major stress axes. The cold injected water then may 
bypass the intended production well, due to ‘cap-
ture’ by the unexpectedly oriented joint set. 

1.4  Non-linear components of rock mass strength 

 

Figure 1 illustrates a collection of non-linear, shear 
strength envelopes, which for convenience have 
been collected in one diagram, with an empirically 
linking equation of shear strength in the form: 

 
τ = σn tan [X.log10 Y + Z]                                       (1) 

 

By their very nature these typical components of a 
rock mass will usually be loaded at a wide variety of 
confining stress, or normal stress levels, due to their 
variable stiffness and strength. Intact ‘bridges’ will 
attract higher stress, due to their higher resistance. 
The ‘Jr/Ja’ filled discontinuities will tolerate least 
load, so could fail a slope ‘easily’ if they dominate. 

 

 
 
Figure 1 The five shear strength envelopes represent the poten-

tial components of shear strength for a rock mass. From top 

down, and at increasing magnitudes of strain, each component 

will supply shear resistance in turn, with each falling towards a 

residual strength with eventual increased deformation. The 

shear strength of rock masses is a composite affair. It is not so 

‘simple’ as H-B/GSI algebra. (From Barton, 1973, 1976, 2006) 

2 SHEAR STRENGTH OF INTACT ROCK 

2.1 Low tolerance of shear stress 

In the introduction, the economic importance of salt 
and shale as cap-rocks was emphasized. It is appro-
priate to start by showing their low position on the 
‘tolerance of shear stress’ scale, as illustrated in Fig-
ure 2. The relative weakness of shale is especially 
important, ever since fracing from horizontal holes 
has given remarkably stimulated production, for 
probable deformation-based reasons discussed later. 
The linear representation of strength by Swolfs, 
1977 (Figure 2) is clearly an over-simplification of  

 

 
Figure 2  Relative shear strength trends for salt, shale, sand-

stone and granite. Linear approximations, after Swolfs, 1977.  
 

reality when the over-burden range of stress of ap-

prox. 35-140 MPa (≈ 1.5-5.5 km depth) is consid-

ered. The strength envelopes will be strongly curved. 

2.2 Critical state concept for high stress 

When performing a wide-reaching review of the 
shear strength of both intact and jointed rock in the 
mid-seventies, the writer was struck by the strong 
non-linearity of the ‘complete’ shear strength enve-
lopes. All the high pressure testing of Byerlee and 
Mogi seemed to confirm this. The examples given in 
Figure 3, from Mogi, 1966, are for various (dry) 
carbonate rocks. Of course they also extend beyond 
stress levels of interest in petroleum reservoirs. 
 

 
 

Figure 3  Strong non-linearity is also seen in petroleum reser-

voir depth range. Carbonate rocks tested by Mogi, 1966. Note 

the gradient of the critical state line, suggested in Barton, 1976. 



These high-pressure triaxial tests on dry carbonate 

rocks, and numerous other data from Byerlee, 1968, 

gave the writer the idea of a ‘critical state’ approach 

to shear strength limits. The critical state line has a 

gradient of tan
-1

(½), or 26°.The explanation of this 

term is clarified graphically in Figure 4. 
 
The horizontal part of the shear strength envelopes 
for these and other rocks, suggested the following 
simple relation: 

 
σ 1 max = 3 σ3 critical                                  (2) 

 
It will be noted that the uniaxial (unconfined) circle 
(#2) and the critical confining pressure circle (#4) 
are drawn as nearly tangent to one another. This po-
tential simplicity has recently been confirmed by 
Singh et al., 2011, who found that the majority of 
rocks exhibited this tendency. (See also Figure 6). 
 

 
 

Figure 4  The illustrated ‘critical state line’ concept was sug-

gested by Barton (1976) as a result of the strong non-linearity 

exhibited by data sets such as those reproduced in Figure 3.  

 

This critical state based simplicity has recently been 

used by Singh et al. (2011) to derive the equations 

giving the correct deviation from linear Mohr-

Coulomb. The new ‘Singh-Singh’ criterion demon-

strates that just a few triaxial tests at low confining 

pressure give the complete strength envelope, also 

showing greater curvature than Hoek-Brown (see 

Figure 5 example). For Hoek-Brown, triaxial tests 

over a wider range of confining pressure are needed.  
 
2.3 Non-linearity more realistic than M-C 

 
Tight oil-shales and naturally fractured reservoirs in 
carbonate rocks usually produce from several kilo-
meters depth, with or without stimulation by fracing 
or water-drive. Due to necessary matrix porosity, the 
matrix is generally weaker than is typical for base-
ment rocks. The potential pore pressure reduction of 
10’s of MPa during the life of a petroleum reservoir 
may mean an effective stress increase which is a 

significant proportion of the strength of the matrix. 
The inevitable non-linear intact rock shear strength 
behaviour should not then be ignored. 
 
It is quite clearly unrealistic to continually utilize a 
linear Mohr-Coulomb strength criterion, as seen so 
often in petroleum service company literature. It 
makes for simplicity but does not reflect reality. 
 

 

 
 

 

 

 

Figure 5  The objective of the Singh et al., 2011 non-linear cri-

terion of shear strength is shown on the left, and an example is 

shown on the right. Tests at low confining pressure suffice. 

 
2.4  Conjugate joint angles vary with depth or stress 
 
It is now common practice for structural geologists 
working for oil companies to utilize drone-
photography when recording the jointing/fracturing 
on pavements above naturally fractured reservoirs. 
These pavements may be analogues for the assumed 
joint or fracture networks at reservoir depths of sev-
eral kilometers. (Joints/fractures used equivalently). 
 
These fracture pavement studies are therefore im-
portant sources of information for fracture network 
construction, seeing the dominance of certain sets. 
Remarkably, no differentiation of mechanical prop-
erties seems to be applied so far, just geometrical 
structural relationships, potential connectivity etc. 
 
Due to the much higher stress at reservoir depths, 
and due to the range of effective stresses to which 
the reservoir rocks may be subjected during the life 
of a field, the non-linearity of strength envelopes and 
the changing conjugate joint angles with stress or 
depth need to be considered. With linear Mohr-
Coulomb this is not a very enlightening exercise. 
 
The very small circles in Figure 6 represent the peak 
strength of fractures, and the dotted curved enve-
lope, drawn into the inadmissible area for reasons of 
clarity, was used to demonstrate the maximum em-
pirical strength of (rough) rock fractures (Figure 1). 



 
 

Figure 6 A complete set of Mohr circles for high-pressure tests 

on strong (UCS = 250 MPa) limestones derived from Byerlee, 

1968 data reproduced by Barton, 1976. Note addition of critical 

state line. Note also the progression of the conjugate-fracture 

angle 2β towards 90° with increasing depth or confinement.  
 

The strong non-linearity of shear strength envelopes 

should not be ignored when producing from a reser-

voir in weaker, more porous carbonates (or shales) 

with a possible life-time 20-40 MPa change of effec-

tive stress. The friction angle cannot be constant! 

 

2.5 A linear equation for non-linear behaviour 

 

A conveniently simple linear equation, which de-

scribes the non-linear shear strength behaviour of in-

tact rock over a range of confining pressure from ze-

ro (uniaxial), through the brittle-ductile transition, 

and up to the critical (maximum strength) state was 

derived by Barton 1976, and appears to have been 

over-looked up to now. It had the following simplest 

possible form: 

 

 (σ1 – σ3)/σc = M σ3/σ1 + 1.0                         (3) 

                                                             

The respective gradients M (shown in Figure 7),  for 

Solenhofen limestone Oak Hall limestone, Nahant 

gabbro and Westerly granite, as tested and reported 

by Byerlee 1968, showed a logical progression of 3, 

7, 9 and 30 as strength increased. 

 

Figure 8 shows brittle and ductile behaviour sym-

bols, and a suggested Byerlee, 1968 curved transi-

tion between the two states. The diagonal line at 45° 

is the proposed Barton, 1976 critical state line, 

which is the vertical ‘limit’ in Figure 7: σ3 crit /σ1 max 

= 0.333. The above critical state concept, and the 

key development of Singh et al., 2011 in defining 

deviation from Mohr-Coulomb, suggests good alter-

natives to the well-known criteria of Figure 9.  

 
 

Figure 7 A method of expressing the non-linear shear strength 

envelopes shown in Figure 8 in a linear form, with logical dif-

ferentiation of gradients between the stronger and weaker rock 

types. Note brittle and ductile differentiation, from the high 

pressure triaxial data of Byerlee, 1968. 

 

 
 
Figure 8 This conventionally plotted differential stress versus 

confining pressure data for six rock types is the source of the 

linear envelopes shown in Figure 7.  

 

It is important to finish this treatment of the shear 

strength of intact rock by pointing out that this po-

tential component of the shear strength of rock 

masses will tend to attract high shear stresses, and 

will need to fail first, for joints sets to be mobilized. 



 

 
Figure 9 Representation of three classic failure criteria, and 

their appropriate application in terms of increasing depth or 

stress level, including temperature effects. After Gudmund 

sson, 2011. A single curvature alternative is seen in Figure 6. 

 
3  SHEAR STRENGTH OF ROCK JOINTS 

 
3.1 The origin of a non-linear strength criterion 
 
The writer started work in rock mechanics at an op-
portune moment immediately following the 1

st
 

ISRM Congress in Lisbon. Patton, 1966 studies of 
rough joints were a source of inspiration for trying to 
find a quantitative alternative to his classic i-value. 
(However ‘i’ can be used in combination with JRC).  
 
The writer performed tests on numerous tension 
fractures, generated in various weak brittle model 
materials, therefore representing different lengths of 
fracture at prototype scale. Two of the shear test re-
sults are represented in an unusual way in Figure 10. 
 

 

 

 
Figure 10 ‘Sheared roughness profiles’, dating from 1968 were 

published in Barton, 1971, 1973. They are exactly-sheared and 

exactly-dilated roughness profiles of tension fractures, whose 

roughness was recorded by photogrammetry. Top: high 

σn/UCS ratio, bottom: low σn/UCS ratio. Note dilation ‘void’. 

 

These rough fractures were direct shear tested fol-

lowing the non-contact roughness recording. The 

sheared profiles are missing possible gouge from 

failed asperities. Nevertheless, the potential for huge 

permeability enhancement, and temporary ‘stabiliza-

tion’ of a deforming rock slope was noted at the 

time. (Permeability with shear: Barton et al. 1985). 
 
The peak shear strength of these rough and clearly 
unweathered tension fractures could be described by 
the following simple relation involving the uniaxial 
compression strengths (σc) of the various brittle 
model materials employed (Barton, 1971): 
 
τ = σn tan [20 log (σc/σn) + 30º]                      (4) 
 
This equation, derived from simple links between 
τ/σn, σc/σn and the peak dilation angles, proved to be 
‘end-member’ of the Barton, 1973, and Barton and 
Choubey, 1977 equations for the peak shear strength 
of rock joints, since unweathered tension-fractures 
clearly maximise surface roughness, wall strength 
and residual friction angle. This first empirical equa-
tion was based on direct shear tests of two hundred 
artificial samples, six of which are shown in Figure 
11, with their superimposed roughness profiles.  
 

 

 
Figure 11 Six out of two hundred tension fracture samples, 

showing only the bottom half of the direct shear test specimens 

in different materials. Two roughness profiles are shown super-

imposed on each sample, as registered using photogrammetry. 

The method used is described in Wickens and Barton, 1971. 

 
3.2 The peak shear strength of real rock joints  
 
A detailed study of the shear strength and dilation 

characteristics of 130 natural joint samples was pub-

lished by Barton and Choubey, 1977. (See Figs. 12, 

13). Samples were sawn from larger jointed blocks 

extracted from rock-cuttings in the Oslo area. Seven 

rock types were represented. These are listed with 

peak shear strength results in Figure 15. Prior to di-

rect shear testing, roughness profiling and Schmidt 

hammer index testing was performed, followed by 

self-weight  tilt-testing  (Figure 14) or  horizontally- 



 

 
Figure 12 Ten representative joint samples with successively 

increasing roughness, had the roughness profiles which are re-

produced in Figure 13. Sample #10 was an artificial tension 

fracture in soapstone. Six of these made 136 samples in total. 

 

 
 

Figure 13 Ten representative roughness profiles, taken from the 

ten joint samples shown in Figure 12, had JRC peak values in the 

range shown on the right-hand side. Matching other joint pro-

files to these ‘standard’ profiles is obviously subjective, and 

tilt-testing was always advised. This advice has been repeated-

ly ignored by critics of JRC, who present 3D profilometer 

analyses, and page-wide equations, which are not helpful in 

rock engineering, where rapid assessment is needed. 

 

oriented push-testing. The peak shear strength could 

be accurately described by the following empirical 

non-linear equation, which is a generalized version 

of  equation 4. Equation 5  has  existed  for 37 years, 

  

  

 

Figure 14  A variety of tilt tests are illustrated. The core sticks 

tested ‘in line’ give φb which usually ranges from 28-32°. 

Core must be unweathered, not polished, nor with ridges.  

 

 
 
Figure 15 Fresh or slightly weathered joints in seven rock types 

were sawn from larger jointed blocks into 130 samples. They 

were direct shear tested once only (not multi-stage testing), and 

showed these peak strength results. Each sample was 100 mm 

long. Note that there is no cohesion, unless samples with verti-

cal ‘steps’ are tested. Barton and Choubey, 1977. 

 
τ = σn tan [JRC log (JCS/σn) + φrº]                      (5) 
 
so the often-quoted downloadable version with an 
error (φb from Barton1973 not replaced by φr from 
1977) was unfortunate, and led to numerous errors in 
refereed studies about JRC. The joint roughness co-



efficient (JRC), the joint wall compression strength 
(JCS) and the residual friction angle (φr) can each 
assume variable magnitudes, caused by variable 
roughness and variable weathering. In these cases 
JCS < σc and φr < φb. All three parameters can be 
measured or estimated from simple index testing, 
now shown in detail in Figure 16. 
 
The tilt-tests can be performed on joints with JRC 
values from 0 to about 9, the upper limit depending 
on sample shape. Rougher joints need to be push-
tested, again using self-weight (gravity) loading.  
 
With suitably thin upper samples (to avoid toppling) 
the normal stress component when sliding occurs  
(usual α° between 50° and 80°), may be as low as 
0.001 MPa. Nevertheless, the result can be extrapo-
lated to normal stress levels 1000 to 10,000 times 
higher. Tens or hundreds of index tests can be per-
formed on each important joint set recovered in 
jointed core, with suitable sawing parallel to the 
joint planes, and clamping to a heavy base in the 
case of  Schmidt hammer tests. A smaller number of  
direct  shear  tests  can  be  performed, but  never by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

using the  ISRM  suggested  method of  multi-stage 
testing, which encourages a clockwise rotation of the 
resulting shear strength envelopes, due to accumulat-
ing damage. Multi-stage testing can therefore have 
the effect of increasing the actually non-existing 
‘cohesion’ intercept, and reducing the friction angle, 
therefore artificially  ‘justifying’ the continued use 
of linear Coulomb τ ≈ ‘c’+σn tan ‘φ’.  
 
When reaching the stage of rock slope design, doubt 
concerning the cohesion, perhaps deciding  to  put it 
as zero, results in unnecessarily conservative design. 
This can have serious consequences for the open-
cast mining industry. Also one must never ‘over-
close’ joints with a higher normal stress in relation 
to the normal stress at which shearing will occur. 
 
In the case of rock joints with significant roughness, 
for instance JRC0 ≥ 8-10, over-closure as described 
above has been shown to increase the steepness of 
the shear strength envelopes. This was shown in 
Barton, 1971: and subsequently documented in Bar-
ton 2007. The author knows of only four such stud-
ies, one by Bandis 1980, also by researchers in Iran.  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 16  In the left-hand column, standard shear-box testing and typical results are shown. The objective of the index tests 

illustrated in the three other columns is to provide input data for JRC, JCS and φr , the latter estimated from measured φb us-

ing two core sticks (unpolished, no ridges) and using the equation with r5 / R5. Schmidt hammer tests give best results when 

the 50% of lowest rebounds are discarded, i.e. do not follow conventional practice. Note that when defining JRC, the R5 (= 

σc) and φb tests are performed with dry rock, while the r5 (=JCS) and tilt tests for JRC are with matrix-saturation (but not 

wet). Note two other ways of estimating JRC: profiling which is subjective, or the a/L method of Barton, 1981 which is fa-

voured, especially with larger scale features to be measured. A larger figure showing the a/L method is given in Figure 21, 

under the heading ‘Effects of joint (block) length’. Occasionally, large-scale shear test facilities are available for testing large 

joint or fracture samples. Figures 23 and 24 show larger-scale JRCn profiles, and tilt testing of 2.6 tons fractured blocks. 

 

 

 

 



3.3 Effects of large variation of normal stress 
 
When tested at low to moderate normal stress levels, 
rock joints display a huge range of shear strengths, 
which is ‘exaggerated’ if only testing lab-scale sam-
ples, as mostly the case in Figure 17a. Note some 
extremely high friction angles, when normal stresses 
are very low (<< 1 MPa) and roughness very high. 
There is no actual cohesion, unless steps are tested. 
 
The high pressure results assembled in Figure 17b 
include data from Barton, 1976 and Byerlee, 1978. 
In view of the range it is surprising that tectonophys-
icists rely on a constant ‘law’ such as τ/σn = 0.85 for 
the assumed strength of ‘shallow’ crustal faults.  
 
Since the range of results is even wider at reservoir 
stress levels (say 50 to 150 MPa representing 2 to 6 
km depth), measurements would seem to be needed. 
One could also try something more logical: estima-
tion of the three strength parameters, but substitute 
in the high-stress version of equation 5 shown in 
Figure 1, using confined strength σ1-σ3 in place of 
JCS. Using a constant (10mm -based) friction angle 
over a wide range of stress and scale, as per Byerlee, 
1978, seems to be an example of extreme optimism. 
 

 

 

 

 
 

Figure 17 Left: A large assembly of DST peak shear strength 

results for a ‘civil engineering’ range of normal stresses. Note 

some extremely high friction angles, nevertheless no actual co-

hesion. Right: A large assembly of high-pressure triaxial tests, 

based on resolved stresses τ/σn. A much stronger scale effect 

(in situ?) can be assumed at low normal stress. Barton, 1990. 

 
3.4  Effects of joint (or block) length 
 

A strong impression of the importance of scale ef-
fects was experienced (Figure 18) when performing 
tilt tests on a joint in granite of approx. 45 cm 
length, and repeating the tilt tests when this large 
slab had been sawn into  10 cm  long  samples. The  

 
 
Figure 18  Tilt tests performed with different block lengths. 

The large-scale JRCn was 5.5, while the mean JRC0 was 8.7. 

This JRC difference will persist unchanged at high stress. 

 
change of average tilt angle of about 10° represented 
a change of JRCn = 5.5 (the subscript meaning large 
scale), to JRC0 = 8.7 (the subscript meaning small 
scale). The eighteen ‘baby’ samples were sheared in 
the same direction as their 25 x larger ‘mother’ joint. 
 
The most important scale-effect tests so far per-
formed were by Bandis, using model materials cast 
as replicas of real rock joints. These could be cut in-
to many different lengths, as illustrated in Figure 19. 
 

  
 

Figure 19 Direct shear-displacement tests on joint replicas by 

Bandis. Note strong reduction in JRCn with block size. These 

important results, and many others are reproduced in Bandis et 

al., 1981. Note that in nature the rock joints defining small 

block sizes may have less roughness, or even be clay-coated. 



As a result of a series of DST on rock joint replicas 
of many different sizes, using joints with different 
roughness, suggestions were made by Bandis et al., 
1981 for down-scaling of JRC and JCS values for 
application to larger block sizes (i.e. larger cross-
joint spacings). Figure 20 illustrates the method. 
 

 

 
 

JRCn ≈ JRCo [ Ln/Lo ] 
-0.02 JRC

o 

 
JCSn  ≈ JCSo  [ Ln/Lo ] 

-0.03 JRC
o         (6a, 6b) 

 

 
Figure 20  Suggested down-scaling of JRC and JCS to cross-

joint spacing (block size) Ln in relation to reference lab-scale 

joint sample length Lo. Note that Ln  is not total joint length. 

 
An alternative way to estimate the large-scale value 

of JRCn is by roughness amplitude measurement: the  

a/L method. This resembles the hydraulic engineers 

‘absolute roughness’ which applies to the micro-

roughness scale affecting hydraulic flow in joints 

(Barton and Quadros, 1997).  

 

Figure 21 illustrates the ‘a/L’ principle of measure-

ment for estimation of JRC0 or JRCn. For conven-

ience, a chart with numerous horizontal lines is used 

when core- or outcrop-logging. It is possible to in-

clude a/L data for Patton i-values, thereby providing 

an ‘external’ addition of a larger-scale roughness i-

angle, or its inclusion as an increased magnitude of 

JRCn. These two options have not been studied suf-

ficiently, and of course their verification is difficult. 

 

 
Figure 21 An alternative way to estimate JRC (and ‘i’, see cu-

be) at different scales, from JRCo (nominal 0.1 m lab-scale) up 

to 10 m, if there was a (very wide) spacing of cross-joints. A 

calibrated stretched steel tape can be used when beyond the 

limits of a 1 to 2 m high-quality folding ruler. The maximum 

amplitude (a) is measured in mm between contact points. When 

core logging, this is done very fast, as illustrated in Figure 22. 

 

 

 
Figure 22 A suggestion for rapid a/L registration when core-

logging, for easy conversion to JRCn using the chart in Figure 

21. This is  by combined use of a profilometer (brush-gauge) 

and a ruler. Such sample orientations are of course ideal for tilt 

tests or push tests (both of these inexpensive and fast). A direct 

shear test of such samples requires sawing to DST box lengths. 

It is unclear why multi-stage testing is recommended by ISRM 

if core is available. Joint samples should not be made so scarce. 
 

3.5 Stress transformation problems and solutions 
 

Figure 23 shows problems experienced when testing 

large samples, due to inadequate theory. Note JRCn 

for Ln = 1.1m in Figure 24 (compare to Figure 13). 



 

 

 

 

 

 

  

 

Figure 23 Large-scale (Ln = 1.1m) characterization and biaxial 

shear testing. Problems with shearing were experienced by 

Bakhtar and Barton, 1984 because of the inadequate theory for 

stress transformation, which ignores the mobilized dilation an-

gle. Some stress-wedge-generated diagonal fractures failed to 

shear when expected. See Table 1 solutions (eqns. 8a, 8b, 9b). 
 

 
 

Figure 24 Roughness profiles (Ln
 
≈ 1.1m), tilt angles α° and  

large-scale JRCn values, demonstrate down-scaling of JRC. 

 

The standard stress transformation equations (7a, 7b) 

are based on the assumption of no actual presence of 

a discontinuity/joint/fracture/fault (it would disturb 

the assumptions), no shearing and no dilation. 

Table 1 The standard and modified stress transformation equa-

tions, allowing for the mobilized dilation angles while shearing 

is occurring towards peak. From Bakhtar and Barton, 1984. 
 

                             (7a, 7b) 

                (8a, 8b) 

 

                                        (9a, 9b) 

 

3.6 The JRC-mobilized concept  
 

This was developed by Barton, 1982, and allows one 

to estimate how JRCmobilized changes with shear dis-

placement, reaching JRCpeak when the current shear 

displacement (δ) reaches δpeak. Beyond this, rough-

ness is degraded towards ultimate strength. A empir-

ical equation in Figure 16 allows the (lower-and-

difficult-to-reach) residual friction (φr) value to be 

estimated. It is a function of weathering grade r5/R5. 
 

 
Figure 25  The JRCmobilized concept. This dimensionless plotting 

routine helps to ‘consolidate’ a series of shear tests performed 

at widely different stress levels into one narrow band represent-

ing the various shear strength versus displacement behaviours. 

 

In Figure 26, the above dimensionless model is used 

together with the block-size scaling equations (Fig-

ure 20) to generate shear strength-displacement and 

dilation-displacement curves for three hypothetical 

block sizes. In the code UDEC-BB, the ‘look-up’ ta-

ble gives a bit smoother curve than in Figure 25. 



 
 

Figure 26 Examples of shear stress-displacement and dilation-

displacement behaviour for lab-scale (0.1m), large-block scale 

(1m) and in situ (2m) scale. The dilation is generated using 

equation 9b and Figures 20 and 25. The inset shows the scaling 

of JRC, JCS and δpeak. ( δpeak ≈ 0.002L (JRC/L)
0.333

: L, δp in m). 

 

 
 

Figure 27 Shear stiffness Ks is much lower than normal stiff-

ness Kn, as it is subject to a double scale-effect: both the peak 

strength and δpeak are scale-dependent. In the literature Ks is of-

ten put too high. Kn/Ks may be 10/1, 50/1, even 100/1. 

4 SHEAR STRENGTH OF ROCK MASSES 

4.1 Physical block models prior to UDEC 
 

In the days before UDEC, it was necessary (though 

not easy) to perform experiments with ‘jointed’ 

physical models.  These like UDEC, also had the 

limitation of being two-dimensional. Nevertheless 

some useful lessons were learned. Figure 28 illus-

trates the mode of formation (double-bladed guillo-

tine) and shows that the primary ‘joint set’ is contin-

uous, and the secondary (or tertiary) sets are stepped 

where they cross the primary. This is ‘realistic’ in 

relation to rock masses. However the limitation is 

that it is difficult to make ‘joint’ roughness interme-

diate between tension fractures (JRC0 ≈ 15-20) and 

traditionally smooth-cast model blocks (JRC0 ≈ 0-1). 

 

  

 
 

 

Figure 28 Prior to UDEC development, it was necessary to use 

physical models for studying discontinuous blocky ‘rock mass’ 

behaviour. The double-bladed guillotine (Barton, 1971) gener-

ated fracture sets with unequal properties. The biaxial test 

frame was used to investigate the effect of varying block size, 

shown in Figures 29 and 30. From Barton and Hansteen, 1979. 

 

4.2 Block-size dependent behaviour 

 

Figure 29 illustrates the importance of block size 
when estimating shear strength using JRCn. 
 

 

 
Figure 29 Biaxial shear tests with two sets of tension fractures 

(4,000, 1,000 or 250 blocks) showed Ln dependent strength. 



 

 
 

Figure 30 Top: Biaxial shearing tests with physical  block-

models  (Barton & Hansteen, 1979)  and  bottom: UDEC-MC  

models  (Shen  and  Barton, 1997) also with 250, 1,000, 4,000 

and even 10,000 blocks. Note the dramatic effect of changing 

block size on shear strength - axial strain, and on block rotation 

potential. Note also the strong increase in lateral expansion 

(pseudo ‘Poisson’ effect). In nature small blocks may have 

joints with less roughness, even clay-filling, so even  lower Em. 

 

The change to linear shear stress-axial strain behav-

iour (top-right), and the suddenly much deeper pene-

tration of a tunneling-induced EDZ (bottom-right) is 

striking. Each occur when block size is reduced suf-

ficiently. This may explain some of the ‘unexpected 

events’ (stoppages) experienced by TBM in fault 

zones, due to loosened blocks falling from the face. 
 

The potential for heat and steam-generation within 

large rock-slides, causing them to travel 20 km in-

stead of an expected 2-3 km could also be linked to 

block rotation. In each case when block size was re-

duced, there was ‘preference’ for a kink-band or 

block rotational mode, as illustrated in Figure 31. 

 

  

 

Figure 31 In each case tested with the smallest block-sizes, 

independent of the fracture set orientation, there was kink-band 

formation, then sudden multiple-block-rotation occurrences. 

 

The shear resistance of rock masses is something 

more complex than complex (H-B/GSI) algebra. 

4.3 Numerical modelling and a priori shear strength 
 
The shear resistance of rock masses must necessarily 
consist of prior failure, at smallest strain, of the stiff-
est component, namely the intact rock bridges which 
may be present to resist ‘simple’ sliding on joint sets 
and along clay-filled discontinuities. The latter are 
mobilized at successively larger strain, which is 
clear when appreciating their low shear stiffness 
(Figure 27). Since failure is process-and-strain de-
pendent, it cannot be correct as so often in the past, 
to add ‘c’ and σn tan ‘φ’, in either linear (M-C) or 
non-linear (H-B) form. Figure 32 is a suitable mille-
nium-ending study by Hajiabdolmajid, Martin and 
Kaiser, 2000 ‘Modelling brittle failure’ which 
demonstrates that ‘standard’ methods of describing 
and modelling failure need to be changed. Current 
continuum modelling, whether using linear or non-
linear shear strength, falls far short of reality. 
 

  

 

 

 

  

 
 

 

Figure 32 Attempts to use ‘standard’ modelling and strength 

criteria were unable to match an observed failure mode (top) in 

highly stressed granite at the URL in Canada. Even the non-

linear Hoek-Brown, GSI-based algebra reproduced in equa-

tions 12 to 16, was unable to help this unrealistic continuum 

modelling, due to the conventional adding of ‘c’ and σn tan ‘φ’. 

However, Hajiabdolmajid et al., 2000 showed an excellent 

match when ‘c’ was degraded before ‘φ’ was fully mobilized. 



  

  

 

Figure 33 Top-left: Continuum models even as good as FLAC-

2D fail to excite or be realistic, if shear failure is likely and 

strength criteria are incorrect. Top-right: Although with 2D 

limitations, the usual anisotropic behaviour of jointed rock 

masses may be captured well by UDEC and better still with 

UDEC-BB, since joint stiffness ratios (Kn/Ks) and shear 

strength should then be realistic. When a rock mass is sparsely 

jointed and stress-fracturing or rock bursting is expected, the 

use of FRACOD (Shen et al., 2013) is strongly recommended. 

Note the ‘dispersion’ of log-spiral shear fracturing when more 

joints are present. (Compare models: lower-left, lower-right). 

 

4.4 Hoek-Brown algebra or CC then FC 
 

Following the simple development of the Q to Qc 

normalization (Qc = Q x σc/100) to obtain better fit to 

seismic velocity and deformation modulus, it was al-

so discovered (Barton, 2002) that Qc seemed to be 

composed of ‘c’ x tan ‘φ’. There is no misprint here 

– the multiplication is correct. This discovery was 

presented as Qc = CC x FC (where Qc = RQD/Jn x 

Jr/Ja x Jw/SRF x σc/100. CC and FC are as follows: 

 

CC = (RQD/Jn) x σc/(100.SRF)                         (10) 

(the component of a rock mass requiring shotcrete 

for tunnel support, if the value of CC is too low) 

 

FC = (Jr/Ja) x Jw                                             (11) 

(the component of a rock mass requiring bolting for 

tunnel reinforcement, if the value of FC is too low) 

 

CC and FC will be quantified by some examples in 

the next column of this paper. But first, by way of 

contrast to their potential simplicity and transparen-

cy, the remarkable complex-algebra Hoek-

Brown/GSI formulæ for non-linear ‘c’ and ‘φ’ will 

be shown for reference. Table 2 also lists the GSI 

and D (damage) based formulæ for mb, s and a. (σ3n 

also needing evaluation, is based on two other pa-

rameters). There can be no set of equations in regu-

lar use in rock engineering that come close to match-

ing all this surprising algebra. It is too easy to 

demonstrate complete lack of ‘transparency’ to e.g. 

an additional joint set or a clay filled discontinuity.  

Table 2  Hoek-Brown/GSI based algebra for ‘c’ and ‘φ’. This is 

what lies behind the ‘shear strength’ curves. One may wonder 

what happens if an extra joint set or clay-filling is added. 
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It is remarkable that so many utilize the computer-

generated H-B/GSI curves of the assumed ‘shear 

strength’ of rock masses. An extremely non-

transparent sequence of ‘nested’ algebra lies behind 

this a priori method. It does not encourage thought, 

or much needed research into the actual process-and-

strain dependent shear behaviour of rock masses. 

 

The ultra-simple and claimed CC and FC links to Q-

system case-record needs for shotcrete and bolting 

obviously will also seem far-fetched, until examples 

of CC and FC are presented, in relation to various 

realistic rock mass conditions. Table 3 shows some 

examples, and includes established links to P-wave 

velocities and deformation moduli (Barton, 2002). 

 
Table 3 Realistic Q-parameterization of successively more 

jointed, clay-bearing and generally weaker rock masses, and 

simply estimated CC (resembling MPa) and tan
-1

(FC)°. 

 

RQD Jn Jr Ja Jw SRF Q c Qc FC º CC Vp Em 

100 

90 

60 

30 

2 

9 

12 

15 

2 

1 

1.5 

1 

1 

1 

2 

4 

1 

1 

0.66 

0.66 

1 

1 

1 

2.5 

100 

10 

2.5 

0.1 

100 

100 

50 

33 

100 

10 

1.25 

0.04 

63 

45 

26 

9 

50 

10 

2.5 

0.3 

5.5 

4.5 

3.6 

2.1 

46 

22 

11 

3.5 

 

Note: σc (MPa), CC (resembling MPa), VP (km/s), Em ( GPa). 

 

In multiple mine stope 3D modelling reported by 

Barton and Pandey, 2011, an investigation was made 

using conventional M-C and H-B input data, which 

was then applied in FLAC-3D. This was followed by 

modelling using (an unusual but needed) depth-

dependent deformation modulus, and degradation of 

CC immediately followed by mobilization of FC.  

 

Good agreement with pre-installed MPBX data was 

found, suggesting that a simple way had been found 

to conduct more realistic modelling, even though the 

performance of continuum modelling is ‘undesira-

ble’ if alternatives exist for distinct element 

(UDEC/3DEC) modelling of e.g. individual stopes.  
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6  CONCLUSIONS 
 
1. The shear strength of intact rock and the shear 

strength of non-planar rock joints are each non-
linear, so it is hard to understand users of linear 
Mohr-Coulomb. It is easy but not correct. 

 
2.  In the petroleum industry, there are numerous us-

ers of ‘linear behaviour’. This is despite the fact 
that there may be 10’s of MPa increase in effec-
tive stresses during the life of a petroleum reser-
voir. So is rock mechanics knowledge ignored? 

 
3. Tectonophysicists often assume τ/σn ≈ 0.85 (or φ 

≈ 40°) for shallow crustal faults, even though 
10mm diameter triaxial samples are the original 
basis for this assumption. There is significant var-
iation in shear strength, even when stress levels 
are as high as 100 to 500 MPa. Several contrib-
uting parameters give inevitable differences. 

 
4. Even rough tension fractures with JRCo as high as 

20, and equally rough joint surfaces, do not have 
cohesion. Instead  they have high total friction 
angles due to strong dilation at very low stress. 
Multi-stage testing tends to create ‘cohesion’. 

 
5. Experiments with physical block models and 

rough tension fractures, and experiments with 
replicas of rock joints tested at different size, 
show higher JRC with smaller blocks. However, 
blocky rock masses often have more planar joints. 

 
6. Rock masses reach shear failure in a process-and-

strain dependent manner. If there are areas of in-
tact rock (‘bridges’), these attract highest stress 
and fail at smallest strain. Sliding on the newly 
formed fracture surfaces (high JRC, JCS and φb) 
progresses to surrounding joint sets (usually low-
er JRC, JCS and φr ) and to nearby clay-filled 
discontinuities. 

 
7. Due to the above process-and-strain dependent 

shear failure, it is not correct to add ‘c’ and σn tan 
‘φ’, whether in a linear Mohr-Coulomb (M-C) or 
non-linear Hoek-Brown (H-B) algebra format. 
Nor is it likely to be realistic to perform only con-
tinuum analyses, since the likely mechanisms of 
shear failure and deformation are being ignored. 
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